Scientists Discover Biological Basis for Autism

A team of brain scientists at Carnegie Mellon University and the University of Pittsburgh have made a groundbreaking discovery into thebiological basis for autism, a mysterious brain disorder that impairs
verbal and non-verbal communications and social interactions.

Using functional magnetic resonance imaging (fMRI) scans, the researchers have found numerous abnormalities in the activity of brains of people with normal IQs who have autism. The new findings indicate a deficiency in the coordination among brain areas. The results converge with previous findings of white matter abnormalities in autism. (White matterconsists of the “cables” that connect various parts of the brain to each other).

The new findings led the researchers to propose a new theory of the
basis of autism, called underconnectivity theory, which holds that autism
is a system-wide brain disorder that limits the coordination and integration
among brain areas. This theory helps explain a paradox of autism: Some
people with autism have normal or even superior skills in some areas,
while many other types of thinking are disordered. The team’s study will be
published in the August edition of the British journal Brain and is
available online at

In explaining the theory, Marcel Just, one of the study’s lead
authors and director of Carnegie Mellon’s Center for Cognitive Brain Imaging,
compared the brain of a normal person to a sports team in which the
members cooperate and coordinate their efforts. In an autistic person, though some “players” may be highly skilled, they do not work effectively as a team, thus impairing an autistic’s ability to complete broad intellectual tasks.

Because this type of coordination is critical to complex thinking and
social interaction, a wide range of behaviors are affected in autism.
The research team believes these are the first findings in autism of
differences in the brain activation patterns in a cognitive (non-social)
task. The study produced two important new findings that help make sense
of previous mysteries: The autistic participants had an opposite distribution
of activation (compared to the control group) in the brain’s two main
language areas, known as Broca’s and Wernicke’s areas. There was also less
synchronization of activation among key brain areas in the autistic
participants compared to the control group.

To obtain technically acceptable fMRI data from high-functioning
autistic participants, the researchers flew in people with autism from all
over the eastern United States. High-functioning participants with autism
(with IQ scores in the normal range) are rare, accounting for about 10
percent of all people with autism. Using non-invasive fMRIs, the team
looked at the brains of 17 people with autism and 17 control subjects as they
read and indicated their comprehension of English sentences.

In both the healthy brains and in the brains with autism, language functions were carried out by a similar network of brain areas, but in the autism brains the network was less synchronized, and an integrating center in the network, Broca’s area,was much less active. However, another center, Wernicke’s area, which does the of individual words, was more active in the autism brains.

The brain likely adapts to the diminished inter-area communication
in autism by developing more independent, free-standing abilities in each
brain center. That is, abnormalities in the brain’s white matter communication
cables could lead to adaptations in the gray matter computing centers.
This sometimes translates into enhanced free-standing abilities or superior
ability in a localized skill.

These findings provide a new way for scientists and medical researchers to think about the neurological basis of autism, treating it as a distributed system-wide disorder rather than trying to find a localized region or particular place in the brain where autism lives. The theory suggests new research to determine the causes of the underconnectivity and ways to treat it.

If underconnectivity is the problem, then a cognitive behavioral
therapy might be developed to stimulate the development of connections in
these higher order systems, focusing on the emergence of conceptual
connections, interpretive language and so on. Eventually, pharmacological
or genetic interventions will be developed to stimulate the growth of this
circuitry once the developmental neurobiology and genetics of these brain
connections are clearly defined by research studies such as these.

The research team is jointly headed by Just, the D.O. Hebb Professor
of Psychology at Carnegie Mellon, and Dr. Nancy Minshew, professor of
psychiatry and neurology at the University of Pittsburgh School of
Medicine and director of its Center for Autism Research. Individuals with High
Functioning Autism and Asperger’s Syndrome between 10 and 55 years of age who are interested in participating in similar studies can send email to or call Nikole Jones at 412-246-5481.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top